
Logistic Regression: Modeling with StatT...
Lichtendahl, Kenne...
Logistic Regression: Modeling with StatTools
Lichtendahl, Kenneth C. Jr.; Andrasko, Joe; Boatright, Benjamin
QA-0945 | Published June 12, 2023 | 6 pages Technical Note
Collection: Darden School of Business
Product Details
Logistic regression is a modeling technique often used to predict a binary variable—a variable coded as 1 if an event of interest occurs (e.g., a borrower defaults on a loan) and coded as 0 otherwise. This note details how logistic regression applies the logistic function to generate a probability forecast for a binary event. It also includes an example of how to fit a logistic regression model to loan default data using StatTools (an Excel add-in). The StatTools output is then used to predict a loan’s default as a function of the borrower’s credit score.
0
Get Ahead in Class

Clear, Complete, and Concise: Avoiding t...
Lipson, Marc L.

Business Valuation in Mergers and Acquis...
Schill, Michael J....

A Brief Introduction to Macroeconomics
Murphy, Daniel

Moral Theory, Frameworks, and the Langua...
Wicks, Andrew C.; ...

Three Empirical Methods for Calculating ...
Zhang, Zhihao; Whi...

The Basics of Multivariate Regressions i...
Batova, Tatiana

Advanced Tableau Tips and Tricks
Palomba, Anthony

Digital Marketing Metrics: Measuring Wha...
Venkatesan, Rajkum...

Disruption, Response, and Transformation...
Chen, Ming-Jer; Mc...

Using AI to Expand Your Leadership Commu...
Murray, Meghan

Understanding Organizational Culture: An...
Martin, Sean; Kemp...

A Brief Introduction to Managerial Accou...
Lynch, Luann J.

How to Prototype a Prototype
Chao, Raul O.

The Strategist’s Toolkit
Lenox, Michael; Ha...

Finance People
Schill, Michael J.